The Surprising Pedagogical Value and Versatility of Cayley Graphs

Nathan Carter, Bentley University

nathancarter.github.io

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e ,	(monoid)
5	and has inverses for every element.	(group)

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e ,	(monoid)
5	and has inverses for every element.	(group)

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e ,	(monoid)
5	and has inverses for every element.	(group)

	0	1	2	3	• • •	n-1
0						
1						
2						
3						
•						
n-1						

	0	1	2	3	•••	n-1
0	6	3	0	4	• • •	0
1	4	2	2	3	• • •	0
2	3	1	0	7	• • •	7
3	7	7	7	4	• • •	3
•	•	•	•	•	•	•
n-1	0	1	1	1	• • •	5

	0	1	2	3
0	3	0	2	1
1	2	3	3	2
2	3	3	3	2
3	0	2	3	0

	0	1	2	3
0	3	0	2	1
1	2	3	3	2
2	3	3	3	2
3	0	2	3	0

	0	1	2	3
0	3	0	2	1
1	2	3	3	2
2	3	3	3	2
3	0	2	3	0

	0	1	2	3
0	3	0	2	1
4	2	3	3	2
2	3	3	3	2
3	0	2	3	0

	0	1	2	3
0	<u> </u>	0	2	1
1	2	3	3	2
2 —	<u> </u>	3	3	2
3 =	0	2	3	0

	0	1	2	3
0-	3	→ 0	2	1
1-	2	→3	3	2
2-	3	→3	3	2
3=	0	2	3	0

0	1	2	3
0-3	0	2	1
1-2	3	3	2
2-3	3	3	2
3-0	2	3	0

0	1	2	3
0-3	0	2	1
1->2	3	3	2
2=>3	3	3	2
3-0	2	3	0

	0	1	2	3
0	3	0	2	1
1	2	3	3	2
2	3	3	3	2
3	0	2	3	0

Generators

To compute: x * y

Use generators: $y = g_1 * \cdots * g_k$

Then compute: $x * (g_1 * \cdots * g_k)$

Problem: $(\cdots(x*g_1)*\cdots)*g_k)$

	0	1	2	3
0	3	0	2	1
1	2	3	3	2
2	3	3	3	2
3	0	2	3	0

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e ,	(monoid)
5	and has inverses for every element.	(group)

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e,	(monoid)
5	and has inverses for every element.	(group)

Generators

To compute: x * y

Use generators: $y = g_1 * \cdots * g_k$

Then compute: $x * (g_1 * \cdots * g_k)$

Problem: $(\cdots(x*g_1)*\cdots)*g_k)$

Generators

To compute: x * y

Use generators: $y = g_1 * \cdots * g_k$

Then compute: $x * (g_1 * \cdots * g_k)$

Problem: $(\cdots(x*g_1)*\cdots)*g_k)$

	0	1	2	3	4
0	0	0	2	4	4
1	0	0	2	4	4
2	2	2	2	4	4
3	3	3	4	2	2
4	4	4	4	2	2

$$0 = 1^3$$

$$2 = 1^4$$

$$3 = 1$$

$$3 = 1^5$$
 $4 = 1^2$

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e,	(monoid)
5	and has inverses for every element.	(group)

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e,	(monoid)
5	and has inverses for every element.	(group)

$$7 = 1 * 2 * 2 * 5 = 2 * 2 * 5$$

$$7 = 1 * 2 * 2 * 5 = 2 * 2 * 5$$

 $7 = 1 * 5 * 5 * 2 = 5 * 5 * 2$

$$7 = 1 * 2 * 2 * 5 = 2 * 2 * 5$$

 $7 = 1 * 5 * 5 * 2 = 5 * 5 * 2$
 $\therefore 2 * 2 * 5 = 5 * 5 * 2$

$$x * y = x * (1 * g_1 * \cdots * g_k)$$

substitution

$$x * y = x * (1 * g_1 * \cdots * g_k)$$
$$= x * (g_1 * \cdots * g_k)$$

substitution identity

$$x * y = x * (1 * g_1 * \cdots * g_k)$$

= $x * (g_1 * \cdots * g_k)$
= $(\cdots (x * g_1) * \cdots) * g_k)$

substitution identity associativity

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e,	(monoid)
5	and has inverses for every element.	(group)

1	A group is a set S	(set)
2	with a binary operation * on S	(magma)
3	that's associative ,	(semigroup)
4	has an identity e ,	(monoid)
5	and has inverses for every element.	(group)

$$x * (g_1 * \cdots * g_k) = x * (g'_1 * \cdots * g'_{k'})$$

$$x * (g_1 * \dots * g_k) = x * (g'_1 * \dots * g'_{k'})$$
$$(y * x^{-1}) * x * g_1 * \dots * g_k = (y * x^{-1}) * x * (g'_1 * \dots * g'_{k'})$$

$$x * (g_1 * \dots * g_k) = x * (g'_1 * \dots * g'_{k'})$$

$$(y * x^{-1}) * x * g_1 * \dots * g_k = (y * x^{-1}) * x * (g'_1 * \dots * g'_{k'})$$

$$y * (g_1 * \dots * g_k) = y * (g'_1 * \dots * g'_{k'})$$

The Surprising Pedagogical Value and Versatility of Cayley Graphs

Nathan Carter, Bentley University

What Do Groups Look Like?

Cyclic Groups

Cyclic Groups

Cyclic Groups

How big can groups get?

Are there non-Direct Products?

Are there non-Direct Products?

Just wait...

Are all groups as boring as that one?

 $C_3 \times C_4$

 $C_3 \times C_4$

Abelian Groups

Abelian Groups

How can we simplify big, complex groups?

SUBGroups

SUBGroups

Group Quotients

Not All "Quotients" Succeed

Not All "Quotients" Succeed

 A_4

Not All "Quotients" Succeed

Not All "Quotients" Succeed

Can we compare groups?

Example embedding

Example embedding

Example non-embedding

Example non-embedding, non-surjection

Are there non-Direct Products?

Are there non-Direct Products?

No more waiting!

Semidirect Products

Semidirect Products

What groups are there?

Sylow Theory

- Cayley graphs generalize naturally to a group acting on any set of elements.
- E.g., here D_3 acts on its own subgroups by right multiplication.

Classifying the groups of order 8

 The Fundamental Theorem of Abelian Groups tells us that the following groups exist.

$$C_8$$
 $C_4 \times C_2$ $C_2 \times C_2 \times C_2$

The nonabelian cases are the interesting ones.

- First Sylow Theorem: There is a subgroup of order 4.
- Previous classifications: It must be C_4 or V_4 .
- If it were V_4 , we would have only elements of order 2, and thus the group would be abelian.

Classifying the groups of order 8

 D_4

 Q_4

The Surprising Pedagogical Value and Versatility of Cayley Graphs

Nathan Carter, Bentley University

nathancarter.github.io

