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and has inverses for every element. (group)
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Generators

Tocompute: x *xy
Use generators: Yy = g1 * - - - * g
Then compute: % (g1 * - - - * gg)

Problem: (- -(x*gq)*---) * gx)
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Generators

Tocompute: x *xy
Use generators: y = g1 * -+ * g

Then compute: x * (gl koo X gk)
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x * green = x * blue x green




/' x * green = x * blue x green
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Invertibility

O—0O O—0

x rxg  yxg 0

L ocation Invariance

T (g k- xgr) =Tk (g * % G )
(yra™)xazxgix-xgp = (yxa ) xxx(gyx- % gp)

yx(g1%--%gg) =y*(gy % *gp)
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What Do Groups
Look Like?
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Symmetric and Alternating
Groups
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How big
can groups get?
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Are there
non-Direct Products?
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Just wait...



Are all groups
as boring as that one?
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Abelian Groups
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How can we simplify big,
complex groups?
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SUBGroups

Left cosets colored

Right cosets are not the
same
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Can we
compare groups?
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Example non-embedding, non-surjection
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No more waiting!
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What groups
are there?



Sylow Theory

 Cayley graphs generalize naturally to a group acting on
any set of elements.

e E.g., here D3acts on its own subgroups by right
multiplication.
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Using Sylow Theory

Classifying the groups of order 8

e The Fundamental Theorem of Abelian Groups tells us that
the following groups exist.

Cg C4><CQ CQXCQXCQ

e The nonabelian cases are the interesting ones.



Using Sylow Theory

Classifying the groups of order 8

* First Sylow Theorem:
There is a subgroup of order 4.

* Previous classifications: It must be (4 or V.

e If it were V4, we would have only elements of order 2, and
thus the group would be abelian.



Using Sylow Theory

Classifying the groups of order 8



Using Sylow Theory

Classifying the groups of order 8




Using Sylow Theory

Classifying the groups of order 8




Using Sylow Theory

Classifying the groups of order 8

b




Using Sylow Theory

Classifying the groups of order 8




Using Sylow Theory

Classifying the groups of order 8

b




Using Sylow Theory

Classifying the groups of order 8

~
~
~
~
~
~
~
~
~
~
~
~
~
..
~




Using Sylow Theory

Classifying the groups of order 8

b




Using Sylow Theory

Classifying the groups of order 8




Using Sylow Theory

Classifying the groups of order 8

b

<3




Using Sylow Theory

Classifying the groups of order 8

b

<3

-
-
.
-
-
-
-
-
-
-
-
-

“




Using Sylow Theory

Classifying the groups of order 8

b

<3




Using Sylow Theory

Classifying the groups of order 8

e b e

>

) 3
) 3
@ @ @ sa




Using Sylow Theory

Classifying the groups of order 8

b

<3




Using Sylow Theory

Classifying the groups of order 8

e b e

4
4
4
4
4
L 4
4
4
4
’ @




Using Sylow Theory

Classifying the groups of order 8

b € Q

SR =




Using Sylow Theory

Classifying the groups of order 8

b € Q

o=




Using Sylow Theory

Classifying the groups of order 8

b € Q

SR =




Using Sylow Theory

Classifying the groups of order 8

b € Q

€
~
} 5 ‘
~§
*‘@ e
5
5
)
5

(@ o’ (@ A&




Using Sylow Theory
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